COMPARATIVE ANALYSIS OF PREDICTION MODELS FOR DIABETES BASED ON ANTHROPOMETRIC INDICATORS

Mualliflar

  • Vazira Mukhamedova Docent, Department of Hospital Therapy and Endocrinology Andijan State Medical Institute Author

##semicolon##

diabetes prediction

Abstrak

The prevalence of type 2 diabetes mellitus (T2DM) continues to increase worldwide, emphasizing the need for early detection tools that are accurate, accessible, and cost-effective. Anthropometric indicators—such as body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), and body fat percentage—are widely used predictors of metabolic risk. Numerous statistical and machine learning models have been developed to forecast diabetes risk using these indicators. This study provides a comparative analysis of traditional regression-based models and modern machine learning algorithms to determine their predictive performance using anthropometric data.

##submission.citations##

1. IDF Diabetes Atlas. (2021). International Diabetes Federation, 10th edition. Brussels, Belgium.

2. WHO. (2011). Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation. Geneva: World Health Organization.

3. Hruby, A., & Hu, F. B. (2015). The epidemiology of obesity: A big picture. Pharmacoeconomics, 33(7), 673–689.

4. Després, J. P. (2012). Body fat distribution and risk of cardiovascular disease: An update. Circulation, 126(10), 1301–1313.

5. Kahn, S. E., Hull, R. L., & Utzschneider, K. M. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 444, 840–846.

6. American Diabetes Association. (2023). Classification and diagnosis of diabetes. Diabetes Care, 46(Suppl 1), S19–S40.

7. Wilson, P. W., Meigs, J. B., Sullivan, L., Fox, C. S., Nathan, D. M., & D’Agostino, R. B. (2007). Prediction of incident diabetes mellitus in middle-aged adults. Archives of Internal Medicine, 167(10), 1068–1074.

8. Schwarz, P. E., Li, J., Lindström, J., & Tuomilehto, J. (2009). Tools for predicting the risk of type 2 diabetes in daily practice. Hormone and Metabolic Research, 41(2), 86–97.

9. Kavakiotis, I., Tsave, O., Salifoglou, A., Maglaveras, N., Vlahavas, I., & Chouvarda, I. (2017). Machine learning and data mining methods in diabetes research. Computational and Structural Biotechnology Journal, 15, 104–116.

10. Ting, D. S., Cheung, C. Y., Lim, G., et al. (2017). Deep learning in healthcare: Review, opportunities, and challenges. Nature Medicine, 25, 71–76.

11. Ashwell, M., & Gibson, S. (2016). Waist-to-height ratio as an indicator of early health risk: Simpler and more predictive than BMI. BMJ Open, 6(3), e010159.

12. Huxley, R., Mendis, S., Zheleznyakov, E., Reddy, S., & Chan, J. (2010). Body mass index, waist circumference, and waist–hip ratio as predictors of cardiovascular risk—a review. European Journal of Clinical Nutrition, 64(1), 16–22.

13. Browning, L. M., Hsieh, S. D., & Ashwell, M. (2010). A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes. Nutrition Research Reviews, 23(2), 247–269.

14. Kodama, S., Horikawa, C., Fujihara, K., et al. (2012). Comparisons of the strength of anthropometric measures in predicting cardiovascular disease and diabetes. Metabolism, 61(5), 653–660.

15. Nyamdorj, R., Qiao, Q., Söderberg, S., et al. (2008). BMI compared with central obesity indicators in predicting diabetes risk. European Journal of Clinical Nutrition, 62, 139–147.

16. Rahman, S. A., Smith, D., & Bocquet-Appel, J. (2013). Application of machine learning methods for diabetes prediction using anthropometric data. Journal of Biomedical Informatics, 46(6), 1126–1132.

17. Alghamdi, M., Al-Mallah, M., Keteyian, S., et al. (2017). Predicting diabetes using supervised machine learning: A comparative analysis. Journal of Diabetes Science and Technology, 11(1), 80–86.

18. Choi, S. B., Kim, W. J., & Park, H. S. (2019). Machine learning-based prediction models for diabetes using anthropometric and health behavior data. Scientific Reports, 9, Article 16956.

19. Piwek, L., Ellis, D., Andrews, S., & Joinson, A. (2016). The rise of wearable technology in health care. PLOS Medicine, 13(2), e1001953.

20. WHO. (2020). Global report on diabetes. Geneva: World Health Organization.

##submission.downloads##

Nashr qilingan

2025-12-07

##submission.howToCite##

COMPARATIVE ANALYSIS OF PREDICTION MODELS FOR DIABETES BASED ON ANTHROPOMETRIC INDICATORS. (2025). JANUBIY OROL BO‘YI TIBBIYOT JURNALI , 1(4), 547-552. https://jurnal.urgfiltma.uz/index.php/SASRSMJ/article/view/250