The role of digital technologies in the restoration of damaged chewing teeth using indirect prosthetics methods
Keywords:
indirect restoration,, dental inlay,, marginal adaptation of teeth,, digital scanningAbstract
For many years, inlays and onlays made of various materials have been considered by dentists as one of the best methods for restoring teeth with medium to large-area carious lesions (Christensen G.J., 1966). Until now, prosthetics were made using a plaster model, which was used directly to create the prosthesis or was digitally scanned to create a virtual model. Improvements in digital impression technologies have significantly simplified the process, increasing patient comfort and speed of procedures, as well as ensuring high quality of restorations (Logozzo S, Zanetti E.M., 2014; Beuer F, Schweiger J., 2008). In addition, the advantages of 3D digitalization include a reduction in the time required to obtain clinical impressions, which, according to recent data, has been reduced by 23 minutes compared to taking conventional impressions (Patzelt S.B, Lamprinos C, Stampf S, Att W., 2005). Intraoral scanners should provide not only high image resolution but also the ability to reproduce 3D images. Intraoral scanning can reduce potential distortions caused by the use of conventional impression materials and allow taking impressions of cavities, reducing material consumption. The introduction of CAD/CAM systems has led to an increase in the use of inlays instead of direct restorative technologies and materials; however, further research is needed to confirm the advantages of these systems (Pol CW, Kalk W., 2011; Santos M.J, Freitas M.C., 2016). Undoubtedly, marginal fit due to the presence of marginal gap and hyperextension control can lead to plaque accumulation (Goujat A, Abouelleil H., 2019), and this is one of the most important criteria for assessing the long-term functional success of the restoration (Pak H.S, Han J.S., 2010). The main reason for restoration failure is cement degradation, and subsequent microleakage can lead to periodontal tissue inflammation and secondary caries in the contact area (Zarauz C, Valverde A, Martinez-Rus F, Hassan B, Pradies G., 2016).
References
1. Christensen GJ. Marginal fit of gold inlay castings. J Prosthet Dent. 1966;16:297–305. doi: 10.1016/0022-3913(66)90082-5.
2. Logozzo S, Zanetti EM, Franceschini G, Kilpelä A, Mäkynen A. Recent advances in dental optics - Part I: 3D intraoral scanners for restorative dentistry. Opt Lasers Eng. 2014;54:203–221.
3. Logozzo S, Kilpelä A, Mäkynen A, Zanetti EM, Franceschini G. Recent advances in dental optics - Part II: Experimental tests for a new intraoral scanner. Opt Lasers Eng. 2014;54:187–196.
4. Beuer F, Schweiger J, Edelhoff D. Digital dentistry: an overview of recent developments for CAD-CAM generated restorations. Br Dent J. 2008;204:505–511. doi: 10.1038/sj.bdj.2008.350.
5. Patzelt SB, Lamprinos C, Stampf S, Att W. The time efficiency of intraoral scanners: an in vitro comparative study. J Am Dent Assoc. 2014;145:542–551. doi: 10.14219/jada.2014.23.
6. Pol CW, Kalk W. A systematic review of ceramic inlays in posterior teeth: an update. Int J Prosthodont. 2011;24:566–575.
7. Santos MJ, Freitas MC, Azevedo LM, Santos GC, Jr, Navarro MF, Francischone CE, Mondelli RF. Clinical evaluation of ceramic inlays and onlays fabricated with two systems: 12-year follow-up. Clin Oral Investig. 2016;20:1683–1690. doi: 10.1007/s00784-015-1669-z.
8. Goujat A, Abouelleil H, Colon P, Jeannin C, Pradelle N, Seux D, Grosgogeat B. Marginal and internal fit of CAD-CAM inlay/onlay restorations: A systematic review of in vitro studies. J Prosthet Dent. 2019;121:590–597.e3. doi: 10.1016/j.prosdent.2018.06.006.
9. Pak HS, Han JS, Lee JB, Kim SH, Yang JH. Influence of porcelain veneering on the marginal fit of Digident and Lava CAD-CAM zirconia ceramic crowns. J Adv Prosthodont. 2010;2:33–38. doi: 10.4047/jap.2010.2.2.33.
10. Zarauz C, Valverde A, Martinez-Rus F, Hassan B, Pradies G. Clinical evaluation comparing the fit of all-ceramic crowns obtained from silicone and digital intraoral impressions. Clin Oral Investig. 2016;20:799–806. doi: 10.1007/s00784-015-1590-5.
11. Владимирова Т. Ю., Чаплыгин С. С., Ровнов С. В., Губарев Г. А., Коркина А. Р. Возможности использования технологий виртуальной реальности при отработке практических навыков по оториноларингологии у студентов // РО. 2022. №6 (121).
12. Гветадзе Р. Ш., Тимофеев Д. Е., Бутова Валентина Гавриловна, Жеребцов А. Ю., Андреева С. Н. Цифровые технологии в стоматологии // Российский стоматологический журнал. 2018. №5.
13. Тарасенко Е.А. Виртуальная медицина: основные тенденции применения технологий дополненной и виртуальной реальности в здравоохранении. Врач и информационные технологии. 2021,2: 46-59. https://doi.org/10.25881/18110193_2021_2_46
14. Vargas-Corral FG, Vargas-Corral AE, Rodríguez-Valverde MA, Bravo M, Rosales-Leal JI. Clinical comparison of marginal fit of ceramic inlays between digital and conventional impressions. J Adv Prosthodont. 2024 Feb;16(1):57-65. doi: 10.4047/jap.2024.16.1.57. Epub 2024 Feb 23. PMID: 38455677; PMCID: PMC10917630.
15. Рогожников А.Г., Гилева О.С., Ханов А.М., Шулятникова О.А., Рогожников Г.И., Пьянкова Е.С. Применение цифровых технологий для изготовления диоксидциркониевых зубных протезов с учетом индивидуальных параметров зубочелюстной системы пациента. Российский стоматологический журнал. 2015; 19(1): 46–51.
16. Zaborowicz K, Firlej M, Firlej E, Zaborowicz M, Bystrzycki K, Biedziak B. Use of Computer Digital Techniques and Modern Materials in Dental Technology in Restoration: A Caries-Damaged Smile in a Teenage Patient. J Clin Med. 2024 Sep 10;13(18):5353. doi: 10.3390/jcm13185353. PMID: 39336840; PMCID: PMC11432073.
17. Hidehiko W., Christopher F., Hongseok An. Digital Technologies for Restorative Dentistry
18. Rekow ED. Digital dentistry: the new state of the art—Is it disruptive or destructive? Dental Mater 2020;36(1):9–24.