АНТИМИКРОБНАЯ И ПРОТИВОГРИБКОВАЯ АКТИВНОСТЬ НОВЫХ СОЕДИНЕНИЙ ТЕРПЕНОВОГО РЯДА.
Keywords:
терпеноиды, противогрибковый, антибактериальный, резазуриновый тестAbstract
В данной работе были исследованы амфифильные меротерпеноиды. Изучена бактериостатическая и фунгистатическая активность терпеноидов в отношении микроскопичсеких грибков Saccharomyces cerevisiae и Candida sp., грамположительных (Staphylococcus aureus, Staphylococcus epidemidis) и грамотрицательных (Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa) бактерий. Соединение, содержащее остаток фарнезола, наиболее активно подавляло жизнеспособность грибков
S. cerevisiae (МИК 0,039 мг/мл), Candida sp. (МИК 0,078 мг/мл), а также бактерий –
S. epidermidis (МИК 0,02 мг/мл) и S. typhimurium (МИК 0,078 мг/мл).
References
1) Fair RJ, Tor Y.Antibiotics and bacterial Resistance in the 21st Century Perspect. Med Chem. 2014;6:14459.doi:10.4137/PMC.S144592.
2) Arastehfar A, Gabaldón T, Garcia-Rubio R, Jenks JD, Hoenigl M, Salzer HJF, Ilkit M, Lass-Flörl C, Perlin DS.Drug-resistant Fungi: an Emerging challenge Threatening our Limited anti-fungal.Armamentarium Antibiotics.2020;9(12):877.doi:10.3390/antibiotics91208773.
3) Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C, Kahlmeter G, Kluytmans J, Carmeli Y, Ouellette M, OuttersonK, Patel J, Cavaleri M, Cox EM, Houchens CR, Grayson ML, Hansen P, Singh N, Theuretzbacher U, Magrini N, Aboderin AO, Al-Abri SS, Awang Jalil N, Ben-zonana N, Bhattacharya S, Brink AJ, Burkert FR, Cars O, Cor-naglia G, Dyar OJ, Friedrich AW, Gales AC, Gandra S, Giske CG, Goff DA, Goossens H, Gottlieb T, Guzman Blanco M, Hryniewicz W, Kattula D, Jinks T, Kanj SS, Kerr L, Kieny MP, Kim YS, Kozlov RS, Labarca J, Laxminarayan R, Leder K, Leibo-vici L, Levy-Hara G, Littman J, Malhotra-Kumar S, Manchanda V, Moja L,Ndoye B, Pan A, Paterson DL, Paul M, Qiu H, Ramon-Pardo P, Rodríguez-Baño J, Sanguinetti M, Sengupta S, Shar-land M, Si-Mehand M, Silver LL, Song W, Steinbakk M, Thom-sen J, Thwaites GE, van der Meer JWM, Van Kinh N, Vega S, Villegas MV, Wechsler-Fördös A, Wertheim HFL, Wesangula E, Woodford N, Yilmaz FO, Zorzet A.Discovery, research, and de-velopment of new antibiotics: the WHO priority list of antibi-otic-resistant bacteria and tuberculosis.Lancet Infect Dis. 2018;18(3):318–327.doi:10.1016/S1473-3099(17)30753-34.
4) WHO fungal priority pathogens list to guide research, devel-opment and public health action. Geneva: World Health Organ-ization; 2022. Available from: http://hdl.han-dle.net/20.500.12105/15113.
5) Sant DG, Tupe SG, Ramana CV, Deshpande MV.Fungal cell membrane-promising drug target for antifungal therapy.JAppl Microbiol. 2016;121(6):1498–1510.doi:10.1111/jam.133016.
6) Silhavy TJ, Kahne D, Walker S.The bacterial cell envelope cold spring.Harb Perspect Biol.2010;2(5):a000414–a000414.doi:10.1101/cshperspect.a0004147.
7) Swoboda JG, Campbell J, Meredith TC, Walker S.Wall teichoic acid function, biosynthesis, and inhibition.ChemBioChem.2010;11(1):35–45.doi:10.1002/cbic.2009005578.
8) Free SJ.Fungal cell wall organization and biosynthesis.Adv Genet. 2013;33–82.doi:10.1016/B978-0-12-407677-8.00002-69.
9) Virtanen JA, Cheng KH, Somerharju P.Phospholipid composi-tion of the mammalian red cell membrane can be rationalized by a superlattice model.Proc National Acad Sci. 1998;95(9):4964–4969.doi:10.1073/pnas.95.9.496410.
10) Cook MA, Wright GD The past, present, and future of antibiot-ics Sci. Transl. Medicine 2022; 14(657): eabo7793 doi:10.1126/scitranslmed.abo7793
11) Olsufyeva EN, Yankovskaya VS.Main trends in the design of semi-syntheticantibiotics of a new generation.Russ Chem Rev. 2020;89(3):339–378.doi:10.1070/RCR489216.
12) Campoy S, Adrio JL.Antifungals.Biochem Pharmacol. 2017;133:86–96.doi:10.1016/j.bcp.2016.11.01917.
13) Obydennov KL, Kalinina TA, Ryabova DV, Kosterina MF, Glu-khareva TV.2-(4-Oxo-1,3-thiazolidin-2-ylidene)acetamid as promising scaffold for designing new antifungal compounds.Chim Techno Acta.2023;10(1):202310106. doi:10.15826/chimtech.2023.10.1.0618.
14) Megha GV, Bodke YD, Shanavaz H, Joy MN.Substituted benzo-coumarin derivatives: synthesis, characterization, biologicalactivities and molecular docking with ADME studies.Chim. Techno Acta.2022;9(4):20229419.doi:10.15826/chimtech.2022.9.4.1919.
15) Shurpik DN, Aleksandrova YI, Makhmutova LI, Akhmedov AA, Stoikov II.Towards nanomaterials with tubular pores: synthe-sis and self-assembly of bis-pillar[5]arene.Chim Techno Acta.2023;10(4):202310412.doi:10.15826/chimtech.2023.10.4.1220.
16) Shurpik DN, Akhmedov AA,Cragg PJ, Plemenkov VV, Stoikov II.Progress in the chemistry of macrocyclic Meroterpenoids Plants.2020;9(11):1582.doi:10.3390/plants9111582
17) Amirzakariya BZ, ShakeriA Bioactive terpenoids derived from plant endophytic fungi: an updated review (2011–2020).Phy-tochem.2022;197:113130.doi:10.1016/j.phytochem.2022.113130
18) Sarker SD, Nahar L, Kumarasamy Y.Microtitre platebased antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screen-ing of phytochemicals.Methods.2007;42(4):321324.doi:10.1016/j.ymeth.2007.01.006
19) Chen S, Xia J, Li C, Zuo L, Wei X. The possible molecular mechanisms of farnesol on the antifungal resistance of C. albicans biofilms: the regulation of CYR1 and PDE2. BMC Microbiol. 2018 Dec 4;18(1):203. doi: 10.1186/s12866-018-1344-z.
20) Sachivkina N.P., Senyagin A.N., Podoprigora I.V., Brown D.G., Vissarionova V.V. Modulating the Antifungal Activity of Antimycotic Drugs with Farnesol. Drug development & registration. 2021;10(4):162-168. (In Russ.)
21) Mangalagiri NP, Panditi SK, Jeevigunta NLL. Antimicrobial activity of essential plant oils and their major components. Heliyon. 2021 Apr 24;7(4):e06835. doi: 10.1016/j.heliyon.2021.e06835
22) Santana JEG, Oliveira-Tintino CDM, Gonçalves Alencar G, Siqueira GM, Sampaio Alves D, Moura TF, Tintino SR, de Menezes IRA, Rodrigues JPV, Gonçalves VBP, Nicolete R, Emran TB, Gonçalves Lima CM, Ahmad SF, Coutinho HDM, da Silva TG. Comparative Antibacterial and Efflux Pump Inhibitory Activity of Isolated Nerolidol, Farnesol, and α-Bisabolol Sesquiterpenes and Their Liposomal Nanoformulations. Molecules. 2023 Nov 17;28(22):7649. doi: 10.3390/molecules28227649.
23) Ivanova A, Ivanova K, Fiandra L, Mantecca P, Catelani T, Natan M, Banin E, Jacobi G, Tzanov T. Antibacterial, Antibiofilm, and Antiviral Farnesol-Containing Nanoparticles Prevent Staphylococcus aureus from Drug Resistance Development. Int J Mol Sci. 2022 Jul 7;23(14):7527. doi: 10.3390/ijms23147527.
24) Liu L, Liu B, Li L, He MX, Zhou XD, Li Q. Myrtenol Inhibits Biofilm Formation and Virulence in the Drug-Resistant Acinetobacter baumannii: Insights into the Molecular Mechanisms. Infect Drug Resist. 2022 Sep 2;15:5137-5148. doi: 10.2147/IDR.S379212.